TALLA DE LOS ESPAÑOLES

ÍNDICE

        DISTRIBUCIÓN POR LA FECHA DE NACIMIENTO

        DISTRIBUCIÓN DE LAS ESTATURAS

        RELACIÓN ENTRE LA ESTATURA DE LOS HOMBRES Y LA DE SUS HIJOS VARONES

            DIFERENCIA DE EDAD ENTRE PADRES E HIJOS

            DIFERENCIA DE ESTATURA ENTRE PADRES E HIJOS

            HERENCIA DE LA TALLA EN LOS VARONES

        PREDICCIONES

 

 

    AÑO DE NACIMIENTO

    Disponemos del año de nacimiento de 10975 varones, distribuidos bimodalmente debido a la manera en que se recogieron los datos. En efecto al solicitar los datos de los sujetos y de sus padres se formaron dos grupos padres e hijos que explican los dos picos tan evidentes en el histograma de distribución de la fechas de nacimiento de los varones que se muestra en la figura. Cada barra del histograma corresponde a un año en el rango de 1900 a 1990.

    El sujeto de más edad nació en 1876 y el más joven en 1989 (se restringió el estudio a sujetos con 18 años cumplidos en el año en que se tomaron los datos) esto supone un rango de 113 años. Debido a la asimetría de la distribución los nacidos antes de 1950 sólo suponen el 25% de la muestra y los nacidos después el resto. La mediana de la población está en 1956, por lo tanto después de este año han nacido la mitad de los sujetos y la otra mitad antes.

    La moda de la población se sitúa en el año 1955 (hay 513 sujetos nacidos ese año), la frecuencia del segundo pico corresponde al año 1985 con 398 individuos, el primer grupo en el histograma corresponde obviamente a los padres mientras que el segundo grupo representa a los hijos. Se dispone de  pocos datos de varones nacidos entre 1965 y 1975 (33 a 43 años de edad en el momento de redactar esta página)

     Para interpretar el resto de los hallazgos es importante tener en cuenta que estos hechos excluyen la posibilidad de que dispongamos de una distribución normal y por lo tanto se debe ser precavido respecto de su extrapolación a la población general y respecto de los niveles de significación de los test estadísticos.

    TALLA

Hay datos sobre la talla de 11389 varones mayores de edad. La distribución presenta un mínimo en 145 cm de altura y el máximo en 206 cm. El promedio de altura del grupo es 174,6 cm, con una desviación típica de 7,6 y con  la mediana en 175 cm. En la siguiente figura se presenta el histograma de frecuencia relativa de la talla,  la distribución es algo mas asimétrica de lo que corresponde a una distribución normal.

    Como veremos a continuación no tiene mucho sentido preguntarse si el promedio obtenido representa o no la estatura promedio de los españoles puesto que esta depende sobre todo del periodo histórico en que la determinemos. En el grafico de cajas se muestra la evolución del promedio  en nuestros datos en función de la fecha de nacimiento.

  

    A simple vista se pasa de estaturas del orden del 167 cm a comienzos de siglo XX a talla de 177 cm para los nacidos al final del siglo. Para un análisis mas preciso estudiaremos la correlación entre la talla y la fecha de nacimiento. Emplearemos como origen el año 1900 asi es que, como fecha, se empleará al año del siglo XX en que nació el sujeto (se calcula como la fecha de nacimiento menos 1900).

  Solamente se dispone de  10973 casos en que se conocen amboa,  la fecha de nacimiento y la estatura. Con un método no paramétrico, el coeficiente de correlación de Spearman, se comprueba que existe una asociación positiva entre la talla y la fecha de nacimiento (coeficiente de correlación rs =0,319 con un  nivel de significación muy alto p<0,001). Con el análisis paramétrico (con las cautelas debidas a la falta de normalidad de las variables) se obtiene un resultado similar con una correlación entre la talla y la fecha de r= 0,326 (p<0,001) por lo que el análisis de la regresión explicaría un 10% de la variabilidad de la talla con una ecuación que sería:

ESTATURA = 166,429 + 0,138 * AÑO NACIMIENTO.

    Con esta ecuación la talla promedio predicha para los nacidos en 1900 es de 166,429 cm (entre 165,965 y 166,893)  y para los nacidos en 2000 sería 180,229 (entre 179,852 y 180,515) que será la talla promedio de los varones españoles, ya nacidos,  que cumplirán  los 18 años de edad en 2018.

     Lo más interesante es la pendiente de la recta de regresión que nos indica un incremento de 13,8 cm en 100 años. Esto nos permite plantear una manera de corroborar este hallazgo y es comparar  nuestra predicción con la diferencia de talla que hay entre padres e hijos. Si lo que acabamos de encontrar es cierto la talla aumenta 0,138 cm por cada año de diferencia de edad y por lo tanto. si la diferencia de edad entre padres e hijos es de 30 años, la diferencia de sus estaturas debería de ser de 0,138*30= 4,14 cm. Los datos de que disponemos permiten comprobar hasta que punto es cierto ya que se recogieron para estudiar, entre otros, este hecho.

    RELACIÓN ENTRE LA TALLA DE LOS HOMBRES Y LA DE SUS HIJOS VARONES.

    DIFERENCIA DE EDAD

    La diferencia entre la fecha de nacimiento del padre y la del hijo en el grupo de 3860 parejas para los que tenemos datos resulta de 30,2 años (entre 30 y 30,5 al 99%), en promedio, con una desviación típica de 5,4 y un valor para la mediana de 30 años. Hay que resaltar que con nuestros datos no es posible precisar si se trata del primer hijo o de hijos ulteriores. La distribución es claramente asimétrica y  leptocúrtica.
    Los valores extremos son 13 y 65 años para las diferencias de edad mínima y máxima (en ambos casos se comprobó que no había error en la recogida de datos y que la fecha de nacimiento del cónyuge era coherente) siendo 28 años la diferencia de edad que se encuentra mas frecuentemente. El histograma de distribución de frecuencias es el que se muestra a continuación.

    DIFERENCIA DE TALLA

    La diferencia entre la estatura del padre y la del hijo resulta en promedio de  4,13 cm (intervalo de confianza al 99% entre 3,82 y 4,44 para 4058 casos) con una  desviación típica de 7,6 y una  mediana de 4 cm (muy significativamente mayor que 0 con  p<0,001). La distribución es bastante simétrica y claramente  leptocúrtica.
    Los valores extremos son 35 cm para el padre más alto que su hijo y 44 cm para el hijo mas alto que su padre. Es muy poco frecuente que el padre supere en altura al hijo ya que esto ocurre en menos del 25% de los casos. El histograma de distribución de frecuencias es:.

    Volviendo a nuestras predicciones la recta de regresión que habíamos encontrado predice que para una diferencia de edad de 30,2 años la diferencia en la talla de los varones españoles debe estar en los 4,17 cm y acabamos de comprobar que la diferencia de talla entre padres e hijos es de 4,13 cm lo que concuerda bastante bien con la predicción.

    En conclusión parece razonable admitir que durante el siglo XX los españoles están siendo cada vez mas altos y que vienen a ganar del orden de 1,38 cm cada década que pasa.. Esto confirma numerosos artículos publicados anteriormente en los que se repite con cifras mas o menos similares esta constatación aunque casi siempre se parte de datos de individuos sin relación de parentesco.

   ¿ PORQUÉ AUMENTA LA ESTATURA?

Como explicación más habitual  se plantea la idea de que la mejora de las condiciones socioeconómicas y de salud propias del desarrollo del país favorecen la expresión de un potencial genético que permitiría alcanzar una mayor estatura.

    Volviendo al grafico de cajas de mas arriba y a la recta de regresión interesa señalar algo que puede resultar importante cuando se trata de explicar el fundamento de este aumento de altura secular. A partir de nuestros datos la tendencia se ha mantenido durante todo el siglo de forma similar . Dicho de otra manera la inspección de los datos no permite detectar grandes oscilaciones en la tendencia, ni para los individuos, ni para los promedios.

     Aunque para las dos primeras décadas del siglo disponemos de pocos datos  para la dos décadas siguientes, la de los años 30 y la de los 40 hay una cantidad razonable de datos (995 casos) y sin embargo no parece que la crisis de la guerra civil y la subsiguiente postguerra haya influenciado de manera notable la tendencia secular. Será interesante comprobar, en el futuro, que ocurre con los nacidos durante la crisis económica de los 90 ya que los nacidos en los 80 (de los que si disponemos de datos) no parecen haber sido afectados en su desarrollo y crecimiento puesto que mantienen la tendencia secular a pasar de haber sufrido la crisis  en su época infantil, la más critica para la consecución de la talla definitiva. Tampoco parece que el despegue económico de los 60 haya incrementado la tendencia secular de manera evidente ya que no se manifiestan picos en las década siguentes.

    Una manera mas precisa de analizar si la tendencia secular es constante o depende otros factores es averiguar si la diferencia entre la talla de los padres y los hijos es un parámetro constante o se modifica secularmente. Dicho llanamente se trata de averiguar si durante todo el siglo los hijos han sido mas altos que sus padres e igualmente más altos o si, por el contrario, eso solo ocurre si las condiciones socioeconómicas del momento lo permiten. Si esto último es lo que ocurre en las épocas de crisis los hijos no deberían ser mas altos que sus padres ya que no habrán tenido unas condiciones optimas para desarrollar el potencial genético que estos les han transmitido.

    El problema es que para este análisis disponemos de relativamente pocos datos, en particular para los hijos nacidos en la década de los 30 ya que, a su vez, disponemos de pocos padres nacidos al principio del siglo. La situación es algo mejor para los nacidos en la postguerra ya que disponemos de más datos.

    En primer lugar la correlación entre la diferencia de estatura entre el hijo y el padre en relación con la fecha de nacimiento del hijo es muy baja rs= -0,08 (aunque débilmente significativa distinta de cero p< 0,05) lo que está a favor de la idea de que la diferencia de estatura entre padre e hijo es similar desde los años 30 hasta los 80. Por otra parte el análisis de la varianza seguido de la prueba de Newman-Keuls  no muestra diferencias significativas  nada más que para el caso excepcional de un sujeto nacido en 1934 que resultó más bajo que su padre. Con los gráficos de dispersión y de cajas se ilustran estos resultados de forma bastante evidente.

    Como conclusión nos podemos plantear que, durante el siglo XX  los hijos de los españoles han presentado la tendencia a sobrepasar en altura a sus padres en unos 4cm de promedio sin que las crisis económicas favorables o desfavorables ni la guerra civil o la postguerra hayan influenciado de forma evidente  esta tendencia.

    Si se pudiera demostrar la realidad de estos resultados preliminares con una población en que esté mejor representada el grupo de los nacidos en el primer tercio del siglo y si se pudiera demostrar que tampoco la crisis de la guerra mundial modificó la tendencia en los países afectados por ésta, habría que plantearse si el incremento secular de la talla mas que debido al desarrollo socioeconómico y a la mejora general del estado de salud se podría explicar por otros fenómenos propios del siglo XX y que han aumentado o disminuido de manera mas uniforme que el nivel económico, como el cambio en la temperatura promedio del planeta o los niveles de contaminación ambiental.

    HERENCIA DE LA TALLA.

    La ecuación:

 ESTATURA HIJO = 0,5*ESTATURA PADRE + 0,5*ESTATURA MADRE +6

se emplea en la literatura pediátrica como una manera de predecir la estatura el hijo en función de la de sus padres. Implícita en ella se encuentran las siguientes asunciones:

    - los varones son en promedio 12 cm más altos que las mujeres lo cual se indica con el termino +6 de manera que en la ecuación de  la talla predicha para una hija se sustituye por -6 y así se obtiene una diferencia de talla en función del sexo de los hijos de 12 cm.

    - la talla de un hijo varón depende de la del padre y de la madres igualmente, es decir la estatura se hereda de los padres con la misma contribución del padre y de la madre.

    Si empleamos esta ecuación con los datos promedio de las parejas de las que tenemos datos obtenemos:

ESTATURA HIJO =0,5*174,6+0,5*163,1+6 = 175

    Si corregimos levemente la formula para tener en cuenta que el promedio de la diferencia de estatura de los padres en nuestro grupo es 10 cm en vez de 12 cm y utilizamos un 5 en lugar de un 6 en la fórmula, la talla predicha para el hijo será de 174 cm, es decir la misma que su padre. Sin embargo hemos visto que, en promedio los hijos son 4 cm mas altos que sus padre, sin excluir que además, alguno de los factores que determina la estatura se herede ligado al sexo ya que al fin y al cabo es un carácter sexual secundario. Por esto hemos procedido a estudiar la relación entre la talla de los padres y la de los hijos.

    El coeficiente de correlación por rangos de Spearman nos indica que existe una relación bastante fuerte entre la talla de los padres y la de sus hijos (rs=0,466 p<0,001) es decir los padres altos tienen hijos altos y los padres bajos hijos también bajos (aunque en ambos casos los hijos sean mas altos que los padres). El estudio paramétrico de correlación y regresión  nos proporciona un coeficiente de correlación de Pearson de 0,470 (p<0,001) y una relación entre la estatura del hijo y la de su progenitor que es:

ESTATURA HIJO  = 91,5796 + 0,495 * ESTATURA PADRE
 

    Puesto que la recta de regresión pasa por el punto cuyas coordenadas son los promedios de ambas variables si utilizamos el promedio de talla de los padres tendremos:

ESTATURA HIJO  = 91,5796 + 0,495 * 173  = 177,2

    Con una diferencia entre ambas (unos 4 cm) como la que habíamos encontrado antes. La representación gráfica es:

 

    Evidentemente esto confirma además la idea de que la estatura de un varón depende de la de su padre, pero con los datos que tenemos podemos estudiar también si la estatura del hijo está, asimismo,  relacionada con la de la madre. Para laa parejas madre.hijo, el análisis estadístico nos dice, en resumen:

    Correlación por rangos rs=0,354 (p<0,001), Correlación Pearson =0,383 y ecuación de regresión:

 ESTATURA HIJO = 104,023 + 0,450* ESTATURA MADRE

    Como se puede ver bastante similar a la encontrada para la relación padre-hijo aunque con una relación algo menos fuerte. El grafico de dispersión con los datos representados a la misma escala que en el caso anterior a efectos de permitir una comparación mas fácil es:

    Para el valor promedio de 163 cm de estatura de la madre obtenemos 177,4 con una diferencia de 14 cm entre ambos que es, por supuesto, el valor promedio de la variable formada por la diferencia de talla entre los hijos y su madre que es mayor que la que existe entre hombres y mujeres en general ya que a la diferencia debida al distinto sexo se añade la que corresponde por  la edad.

    Lógicamente el paso siguiente es estudiar la dependencia de la estatura del hijo conjuntamente respecto de la talla de u padre y de la de su madre. El gráfico de dispersión bidimensional es:

    El plano de regresión tendría la ecuación:

ESTATURA HIJO = 58,27 + 0,391*ESTATURA PADRE + 0,315*ESTATURA MADRE
 

    El error típico o desviación típica de los residuos sería de 6,3 cm y la ecuación explicaría un 27% de la variabilidad de los datos. La influencia de la talla del padre es discretamente superior a la de la madre. La dependencia de la talla de la estatura del progenitor del mismo sexo es mayor para las mujeres que para los hombres.

    Finalmente y puesto que se comprobó que había relación entre la talla y el año de nacimiento del sujeto se ha procedido a un análisis de correlación múltiple por pasos comprobando que la introducción del año de nacimiento mejora algo la predicción de la estatura del sujeto ya que se pasa a explicar el 28% de la variabilidad. El modelo que se encuentra es :

ESTATURA HIJO = 56,56 + 0,039* EDAD + 0,394*ESTATURA PADRE + 0,303*ESTATURA MADRE

   Con todas las estaturas en cm y la edad en años calculada como el año de nacimiento del sujeto menos 1900 es decir como el año del siglo XX en que nació el individuo.

    Como se puede observar la estatura del padre es el factor predominante, seguida de la de la madre, mientras que el factor correspondiente al año de nacimiento influye menos.

    PREDICCIONES

    Con los datos de que disponemos podemos plantearnos predecir la estatura promedio de los españoles nacidos en el año 2000 según los siguientes supuestos:

    El padre habría nacido 30 años antes en 1970

    El promedio de estatura para los nacidos en esa fecha sería: 176 cm

    En promedio, en una pareja en la que el varón tenga esa estatura la  estatura de la mujer sería 166 cm

    Por lo tanto nuestros datos predicen que, en promedio, los varones españoles nacidos en 2000 tendrán, cuando sean adultos una estatura de 180 cm, frente a los 167 o menos que medían en promedio al comienzo del siglo XX.

 

    Las predicciones y la significación de estos resultados  podrían mejorar  si se recogen nuevos datos que incrementen la representación de las cohortes que corresponden a comienzos del siglo XX y a la década de 1965 a 1975 obteniendo poblaciones que cumplan los criterios de normalidad mejor que las empleadas hasta ahora.

 

VOLVER AL COMIENZO

 

última revisión miércoles, 05 mayo 2010 por miguel de córdoba